Nonlinear Approximation by Sums of Exponentials and Translates
نویسندگان
چکیده
In this paper, we discuss the numerical solution of two nonlinear approximation problems. Many applications in electrical engineering, signal processing, and mathematical physics lead to the following problem. Let h be a linear combination of exponentials with real frequencies. Determine all frequencies, all coefficients, and the number of summands if finitely many perturbed, uniformly sampled data of h are given. We solve this problem by an approximate Prony method (APM) and prove the stability of the solution in the square and uniform norm. Further, an APM for nonuniformly sampled data is proposed too. The second approximation problem is related to the first one and reads as follows: Let φ be a given 1-periodic window function as defined in section 4. Further let f be a linear combination of translates of φ. Determine all shift parameters, all coefficients, and the number of translates if finitely many perturbed, uniformly sampled data of f are given. Using Fourier technique, this problem is transferred into the above parameter estimation problem for an exponential sum which is solved by APM. The stability of the solution is discussed in the square and uniform norm too. Numerical experiments show the performance of our approximation methods.
منابع مشابه
Nonlinear approximation by sums of nonincreasing exponentials
Many applications in electrical engineering, signal processing, and mathematical physics lead to following approximation problem: Let h be a short linear combination of nonincreasing exponentials with complex exponents. Determine all exponents, all coefficients, and the number of summands from finitely many equispaced sampled data of h. This is a nonlinear inverse problem. This paper is an exte...
متن کاملSome results of 2-periodic functions by Fourier sums in the space Lp(2)
In this paper, using the Steklov function, we introduce the generalized continuity modulus and denethe class of functions Wr;kp;' in the space Lp. For this class, we prove an analog of the estimates in [1]in the space Lp.
متن کاملApproximation by Piecewise Exponentials *
A function is called an exponential if it is a linear combination of products of polynomials with pure exponentials. In this paper lower and upper bounds for families of spaces of piecewise exponentials are established. In particular, the exact Lp-approximation order (1 _< p _<) is found for a family {Sh}h>O of function spaces when each Sh is generated by an exponential box spline and its multi...
متن کاملSparse approximation of functions using sums of exponentials and AAK theory
We consider the problem of approximating functions by sums of few exponentials functions, either on an interval or on the positive half-axis. We study both continuous and discrete cases, i.e. when the function is replaced by a number of equidistant samples. Recently, an algorithm has been constructed by Beylkin and Monzón for the discrete case. We provide a theoretical framework for understandi...
متن کاملThe Exponentials in the Span of the Multiinteger Translates of a Compactly Supported Function; Quasiinterpolation and Approximation Order
Given a compactly supported function tp: W -*• C and the space 5 spanned by its integer translates, we study quasiinterpolants which reproduce (entirely or in part) the space H of all exponentials in S. We do this by imitating the action on H of the associated semi-discrete convolution operator *' by a convolution A*, A being a compactly supported distribution, and inverting A*|H by another ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 33 شماره
صفحات -
تاریخ انتشار 2011